Chapter 21: OpenCV

Introduction

In the world of Artificial Intelligence, visual understanding is a powerful capability. Computers
are now being taught to "see™ and "interpret™ the world around them, just like humans. This area
of Al is called Computer Vision. One of the most widely used libraries for computer vision is

OpenCV — Open Source Computer Vision Library.

In this chapter, you will explore the basics of OpenCV, understand how images are processed in
a computer, and learn how Al applications like face detection, object tracking, and gesture

recognition are built using OpenCV.

21.1 What is OpenCV?

OpenCV stands for Open Source Computer Vision Library. Itis a Python-compatible and

C++-based open-source library that provides tools to:

Read and write images

Perform image processing
Detect faces and objects
Analyze visual data in real-time

Itis widely used in:

Robotics

Surveillance systems

Augmented Reality (AR)

Healthcare diagnostics (e.g., detecting X-ray abnormalities)

21.2 Installing OpenCV in Python

To use OpenCV in Python, it must be installed using pip:

pip install opencv-python

Once installed, it is imported using:

import cv2

21.3 Working with Images
21.3.1 Reading an Image

To read an image:

import cv2

image = cv2.imread('example.jpg"')
cv2.imshow('Display Image', image)
cv2.waitKey(9)
cv2.destroyAllWindows ()

e imread() — loadsthe image

e imshow() —displays it in a window

e waitKey(@) — waits for a key press

e destroyAllWindows () — closes the window
21.3.2 Image asa Matrix
Images are stored as matrices of pixels:

e Grayscale images — 2D arrays (Height x Width)
e Color images — 3D arrays (Height x Width x 3 channels - BGR)

21.4 Image Processing with OpenCV
OpenCV allows many image manipulation techniques:

21.4.1 Converting to Grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

21.4.2 Resizing an Image
resized = cv2.resize(image, (300, 200))

21.4.3 Blurringan Image

blurred = cv2.GaussianBlur(image, (5, 5), 9)

21.4.4 Drawingon Images
cv2.rectangle(image, (50, 50), (200, 200), (0, 255, 0), 2)
cv2.circle(image, (150, 150), 50, (255, @0, @), 3)

21.5 Face Detection Using OpenCV

OpenCV comes with a pre-trained face detection model using Haar Cascades.

21.5.1 Load Haar Cascade Classifier

face_cascade = cv2.CascadeClassifier('haarcascade frontalface default.xml')

21.5.2 Detect Faces in an Image

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)

for (x, y, w, h) in faces:
cv2.rectangle(image, (x, y), (x + w, y + h), (255, @, @), 2)

21.5.3 Display Detected Faces
cv2.imshow('Detected Faces', image)
cv2.waitKey(0)
cv2.destroyAllWindows ()

21.6 Using Webcam with OpenCV

To capture live video from a webcam:
cap = cv2.VideoCapture(9)
while True:

ret, frame = cap.read()
cv2.imshow('Webcam Feed', frame)

if cv2.waitKey(1l) & OxFF == ord('q"):
break

cap.release()
cv2.destroyAllWindows ()

This is used in:

e Real-time face detection
e Gesture recognition
e Al-powered video applications

21.7 Applications of OpenCV

Field Application Example

Healthcare | Detecting tumors in scans

Automotive | Lane detection in self-driving cars

Retail Customer movement tracking

Field Application Example

Security Intruder detection using CCTV

Education | Gesture-based interaction systems

Summary

OpenCV is a powerful and widely used open-source library for image and video processing. It
forms the foundation of computer vision applications in Al. In this chapter, you learned to:

e Install and use OpenCV in Python

e Read, display, and manipulate images

e Convert color images to grayscale and apply filters
e Draw shapes and text on images

e Detect faces in static images

e Capture and process video in real-time

This knowledge is the first step toward building intelligent systems that can understand and
interact with the visual world—just like humans do.

