
 

Now what we now going to prove is that the set of all strings over a finite alphabet is also 

countable. So what do I mean by that is just few slides back I took a binary alphabet which has 

only 2 symbols 0 and 1. And I proved that the set Π* which is the set of all possible strings of 

finite length which are binary is countable. Now I am generalizing this result to a bigger alphabet 

which may have more than 2 symbols or 2 characters. 

 
So I am assuming that I have an alphabet Π consisting of m number of characters s1 to sm or m 

number of symbols. And Π* denote the set of all possible strings finite length strings over this 

alphabet. So my claim is that is that Π* is countable. So again what is Π*, the way we have 

defined Π* for the case of the binary alphabet we are going to follow the definition:  Π* will be 

the union of the various subsets Π(i).  

 
Where Π(i) denote the subset of all strings of length exactly i over the alphabet Π. So, for 

instance if my Π is consisting of alphabets a, b and c, 3 characters. Then Π(0) of course will be 

the empty string, Π(1) will have all the strings of length 1. So I will have 3 strings.   Π(2) will have 

all possible strings of length 2. So I can have strings like this and so on. So it is easy to see that 

each subset Π(i) is finite because each subset will have mi number strings. 

 
And the set Π* is the union of all such subsets. So it will have infinite number of elements. But 

now we want to show a valid sequencing of the elements in the set Π* . So here is how we can 

list down all the elements of the set Π* without missing any of them. So since the set Π(1) is 
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finite it will have an enumeration of the elements of its set. So let that enumeration be this. So 

the first string in Π(1) is denoted as str11, the second string is denoted by str12 and so on. 

 
So in the subscript I have 2 variables. The first index here denotes the subset in which the string 

belong. And the second subscript denotes the ordering of that element within that subset. In the 

same way I will have a sequencing for the elements in the subset Π(2). So you can see here each 

string the first index is 2 2 2 denoting that each such thing belonging to the second subset and 

then we have the second level of indexing.  

 
And the second level of indexing is from 1 to m2 because this because the subset Π(2) will have 

m2 number of elements. And in the same way if I consider the subset Π(n) it will have mn number 

of strings and like that. So now what we have to do is we have to come up with a valid 

mechanism or valid sequencing for listing down the elements of set Π*. And that I can do by 

following the sequencing by following this ordering what exactly is this ordering. 

 
The idea is that you first list down all strings of the form strij where the sum of the indices i and j 

is 2. Why we are starting with the summation of indices being 2, because you can see that my 

first string here the least indexing I can have here is str11 and the summation of the indices will 

be 1 + 1 namely 2. So I will start with str11. Then I will list out all the elements; all the strings 

where the summation of the indices will be 3.  

 
So that is why str12 and str21 because the summation of these 2 indices will be 3 and the 

summation of these 2 indices also will be 3. Now if you have many strings where the summation 

of their indices are the same value then you will follow the ordering among the subsets itself. So 

since str12 appears in the subset Π(1) and the str21 follows comes in as the subset Π(2) and Π(1) is 

appearing before Π(2) that is why I have listed down str12. 

 
And then I have listed on str21. Then I will list down all strings such that the summation of the 

indices is 4. And again you can see here there are 3 strings. So what I have done is I have first 

taken the string from the set Π(1) and then I have taken the string from the set Π(2) and then I have 

taken the string from the set Π(3) and so on. So you can see here if I follow this ordering this is a 

well-defined ordering. 
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Why it is well defined ordering? Because you take any string x belonging to Π* it will belong to 

some Π(i). That means it will be appearing somewhere in the listing of the elements of Π(i) and it 

will have a form strα,β. So x will be of the form say strα,β. And α+β will be some integer. So say α 

+ β is say γ. So once I have listed down all the strings where the summation of its indices is γ-1. 

 
Next I will be listing down all the elements all the strings with such that the summation of the 

indices is γ and during that process x will be appearing in my sequence. So I will not be missing 

x and I know definitely we will not be waiting infinitely for listing down the element x. That 

means we will never get stuck in this process of listing down or enumerating down the elements 

of the set Π* and that is why this is the valid sequence. 

(Refer Slide Time: 38:32) 

 

So now based on the previous theory what we can prove here is that the set of programs or set of 

valid programs in any programming language is also countable. So what do I mean by that, you 

take Π to be the set of all keyboard characters. It is a finite alphabet because you have only finite 

number of keyboard characters; even if you take various combination of keyboard characters that 

will give you a new character. 

 
But even if you take all such combinations the set of  all the characters which you can type using 

the keyboard in a finite alphabet, I am calling it Π. We already proved that Π* is countable if Π 

is a finite alphabet. We just proved that because Π(i) will be the set of all possible strings of 

length exactly i and we know how to enumerate out all the elements, all the strings of the set Π*.  
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Now imagine you have a programming language L, it can be C C+ +, java, python any 

programming language. And let this calligraphic P denote the set of all valid programs in your 

programming language. What do I mean by a valid program? I mean to say it has a start 

instruction or a begin instruction and it has an end instruction. And in between the begin and the 

end instruction or the start end instruction and you have arbitrary number of syntactically correct 

instructions in that programming language. 

 
Valid instructions in the sense when you compiled the program you do not get any error you get 

some output. How many instructions you can have between the begin and end well that can be 

arbitrary large but it will be finite. It would not be the case that you have infinite number of steps 

between the begin and the end instruction. Why that is the case because if you have infinite 

number of instruction between the begin and end instruction how can your program be valid.  

 
How can your program will give you some output because to get the output from your program 

you need to reach that end instruction you compiler need to reach the end instruction. That 

means after parsing all the steps between your begin and end instruction the program has 

compiled and given you an output. And that is possible only if your number of instructions 

between the begin and end instruction is a finite quantity. 

 
That means the number of steps is some natural number positive number. So this is my set P you 

can imagine it as many programs but the claim is that set P is countable even though the number 

of programs is infinite. Because you can keep on inserting, you can keep on taking existing 

programs and keep on increasing the size of the program by inserting a new valid instructions in 

the existing valid programs. That way you can keep on creating new programs, this process will 

never stop. 

 
You cannot say that after this program I cannot find a new program or new valid program. There 

is no end point here you can always keep on coming up with new programs based on existing 

program. The simple thing will be just take any existing valid program and just before the end 

instruction insert a new valid instruction, that will give you a new program which is different 

from the previous program.  
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And that is why this set P which is the set of all valid programs in your programming language is 

an infinite set it is not a collection of finite number of programs. But the claim is that even 

though if you have infinite number of programs in your programing language that set is 

countable. We can list down or we can come up with an enumeration of all valid programs in 

your programming language. And why that is the case because we just proved that any subset of 

a countable set is countable. 

 
And what exactly is the set of all valid programs in your programming language well? that is a 

strict subset or a proper subset of the set Π*. Why? Because I am just considering only valid 

programs I am not considering invalid program. My set P has only those programs which will 

compile and will give me some output. I am not considering programs of the form which has 

only a begin instruction that is all.  

 
That is also string over the set Π* the string belongs to Π*. But this is not a valid program 

because it has no end instruction. In the same way the set in the string end also belongs to Π* but 

it cannot be considered as a valid program. But if you consider the string begin followed by end 

then that is also string belonging to Π*. But that is a valid program because you have a begin 

instruction and the instruction and in between you do not have anything but that is fine, this is a 

valid program. 

 
So that is why the set P will have only a subset of strings from the Π* because Π* will have all 

the things that you have in the set P plus invalid programs as well because Π* just talks about 

strings over the set Π whether the string is a valid program in your programming language or not 

that is not necessary here. That is why the set P is the strict subset of Π*. And since we know 

that Π* is countable that means we know how to list down the elements of the set Π*. 

 
Using that process we can also come up with the process of listing down all the valid programs 

in your programming language as well. So that proves a very interesting result. What we have 

proved is that even though the number of programs the number of valid programs in any 

programming language is infinite, we can always list down those valid programs so that we are 

never going to miss any program of any valid program in your programming language in that 

sequencing.  
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And it will not be an infinite process in the sense you would not be stuck for ever to find out the 

position of any valid program in the programming language in that sequencing. 

(Refer Slide Time: 45:34) 

 

So that brings me to the end of this lecture. These are the reference for today’s lecture and again 

I followed some of the examples from this article in the current lecture thank you.  
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