
Chapter 3

Array operations and Linear
equations

3.1 Array operations

MATLAB has two different types of arithmetic operations: matrix arithmetic operations
and array arithmetic operations. We have seen matrix arithmetic operations in the previous
lab. Now, we are interested in array operations.

3.1.1 Matrix arithmetic operations

As we mentioned earlier, MATLAB allows arithmetic operations: +, −, ∗, and ˆ to be
carried out on matrices. Thus,

A+B or B+A is valid if A and B are of the same size
A*B is valid if A’s number of column equals B’s number of rows
A^2 is valid if A is square and equals A*A
α*A or A*α multiplies each element of A by α

3.1.2 Array arithmetic operations

On the other hand, array arithmetic operations or array operations for short, are done
element-by-element. The period character, ., distinguishes the array operations from the
matrix operations. However, since the matrix and array operations are the same for addition
(+) and subtraction (−), the character pairs (.+) and (.−) are not used. The list of array
operators is shown below in Table 3.2. If A and B are two matrices of the same size with
elements A = [aij] and B = [bij], then the command

30



.* Element-by-element multiplication

./ Element-by-element division

.^ Element-by-element exponentiation

Table 3.1: Array operators

>> C = A.*B

produces another matrix C of the same size with elements cij = aijbij . For example, using
the same 3× 3 matrices,

A =




1 2 3
4 5 6
7 8 9


 , B =




10 20 30
40 50 60
70 80 90




we have,

>> C = A.*B

C =

10 40 90

160 250 360

490 640 810

To raise a scalar to a power, we use for example the command 10^2. If we want the
operation to be applied to each element of a matrix, we use .^2. For example, if we want
to produce a new matrix whose elements are the square of the elements of the matrix A, we
enter

>> A.^2

ans =

1 4 9

16 25 36

49 64 81

The relations below summarize the above operations. To simplify, let’s consider two
vectors U and V with elements U = [ui] and V = [vj].

U. ∗ V produces [u1v1 u2v2 . . . unvn]
U./V produces [u1/v1 u2/v2 . . . un/vn]
U.ˆV produces [uv1

1 uv2
2 . . . uvn

n ]

31



Operation Matrix Array

Addition + +
Subtraction − −

Multiplication ∗ .∗
Division / ./

Left division \ .\
Exponentiation ˆ .̂

Table 3.2: Summary of matrix and array operations

3.2 Solving linear equations

One of the problems encountered most frequently in scientific computation is the solution of
systems of simultaneous linear equations. With matrix notation, a system of simultaneous
linear equations is written

Ax = b (3.1)

where there are as many equations as unknown. A is a given square matrix of order n, b is a
given column vector of n components, and x is an unknown column vector of n components.

In linear algebra we learn that the solution to Ax = b can be written as x = A−1b, where
A−1 is the inverse of A.

For example, consider the following system of linear equations





x+ 2y + 3z = 1
4x+ 5y + 6z = 1
7x+ 8y = 1

The coefficient matrix A is

A =




1 2 3
4 5 6
7 8 9


 and the vector b =




1
1
1




With matrix notation, a system of simultaneous linear equations is written

Ax = b (3.2)

This equation can be solved for x using linear algebra. The result is x = A−1b.

There are typically two ways to solve for x in MATLAB:

1. The first one is to use the matrix inverse, inv.

32



>> A = [1 2 3; 4 5 6; 7 8 0];

>> b = [1; 1; 1];

>> x = inv(A)*b

x =

-1.0000

1.0000

-0.0000

2. The second one is to use the backslash (\)operator. The numerical algorithm behind
this operator is computationally efficient. This is a numerically reliable way of solving
system of linear equations by using a well-known process of Gaussian elimination.

>> A = [1 2 3; 4 5 6; 7 8 0];

>> b = [1; 1; 1];

>> x = A\b

x =

-1.0000

1.0000

-0.0000

This problem is at the heart of many problems in scientific computation. Hence it is impor-
tant that we know how to solve this type of problem efficiently.

Now, we know how to solve a system of linear equations. In addition to this, we will
see some additional details which relate to this particular topic.

3.2.1 Matrix inverse

Let’s consider the same matrix A.

A =




1 2 3
4 5 6
7 8 0




Calculating the inverse of A manually is probably not a pleasant work. Here the hand-
calculation of A−1 gives as a final result:

A−1 =
1

9




−16 8 −1
14 −7 2
−1 2 −1




In MATLAB, however, it becomes as simple as the following commands:

33



>> A = [1 2 3; 4 5 6; 7 8 0];

>> inv(A)

ans =

-1.7778 0.8889 -0.1111

1.5556 -0.7778 0.2222

-0.1111 0.2222 -0.1111

which is similar to:

A−1 =
1

9




−16 8 −1
14 −7 2
−1 2 −1




and the determinant of A is

>> det(A)

ans =

27

For further details on applied numerical linear algebra, see [10] and [11].

3.2.2 Matrix functions

MATLAB provides many matrix functions for various matrix/vector manipulations; see
Table 3.3 for some of these functions. Use the online help of MATLAB to find how to use
these functions.

det Determinant
diag Diagonal matrices and diagonals of a matrix
eig Eigenvalues and eigenvectors
inv Matrix inverse
norm Matrix and vector norms
rank Number of linearly independent rows or columns

Table 3.3: Matrix functions

3.3 Exercises

Note: Due to the teaching class during this Fall Quarter 2005, the problems are temporarily
removed from this section.

34


