
Chapter 18: PRINT 

(Class 9 Artificial Intelligence) 

 

Introduction 

In programming, one of the most essential operations is displaying output to the user. This is 
done using the print() function in Python. The print() function allows a programmer to 

show messages, values of variables, results of calculations, and much more to the screen. 
Whether you're debugging code or building user-friendly software, mastering the use of print() 

is fundamental. 

In this chapter, you will learn what the print() function is, how it works, and how to use it 

effectively with various data types, formatting options, and escape characters. 

 

18.1 What is the print() Function? 

The print() function in Python is used to display output on the screen. It is a built-in 

function, meaning it’s available without any import or special declaration. 

Syntax: 

print(object(s), sep=' ', end='\n', file=sys.stdout, flush=False)  

Parameters: 

• object(s) – Any number of objects to be printed. Separated by commas. 

• sep – Optional. Separator between objects. Default is a space ' '. 

• end – Optional. String appended after the last value. Default is newline '\n'. 

• file – Optional. An object with a write method. Default is sys.stdout. 

• flush – Optional. Whether to forcibly flush the stream. Default is False. 

 

18.2 Printing Strings 

Strings are text enclosed in single quotes (' '), double quotes (" "), or triple quotes (''' ''' or 

""" """). 

Example: 

print("Hello, World!") 

Output: 

Hello, World! 



 

18.3 Printing Numbers and Expressions 

You can use print() to display numbers and even solve arithmetic expressions directly. 

Example: 
print(10) 
print(5 + 3) 

Output: 

10 
8 

 

18.4 Printing Multiple Values 

The print() function can take multiple arguments, separated by commas. 

Example: 

a = 5 
b = 10 
print("The values are", a, "and", b)  

Output: 

The values are 5 and 10 

 

18.5 The sep Parameter 

The sep parameter controls what is printed between multiple items. 

Example: 

print("10", "20", "30", sep="-") 

Output: 

10-20-30 

This is useful when printing dates, times, or IDs with specific formatting. 

 

18.6 The end Parameter 

The end parameter controls what is printed after the statement ends. By default, it’s a newline 

(\n), but you can change it. 



Example: 

print("Hello", end=" ") 
print("World") 

Output: 

Hello World 

 

18.7 Escape Characters 

Escape characters start with a backslash (\) and allow you to include special characters in 

strings. 

Escape Sequence Description 

\n New line 

\t Tab space 

\\ Backslash 

\' Single quote 

\" Double quote 

Example: 

print("Line1\nLine2") 
print("She said, \"Hello!\"") 

Output: 

Line1 
Line2 
She said, "Hello!" 

 

18.8 Printing Variables 

You can use variables with the print() function to show their values. 

Example: 

name = "Ravi" 
age = 14 
print("Name:", name) 
print("Age:", age) 

Output: 

Name: Ravi 
Age: 14 



 

18.9 Printing Using f-strings (Formatted Strings) 

Introduced in Python 3.6, f-strings allow you to embed variables directly inside strings. 

Example: 

name = "Anita" 
score = 95 
print(f"{name} scored {score} marks.")  

Output: 

Anita scored 95 marks. 

F-strings make code more readable and concise. 

 

18.10 Printing with .format() 

Another way to insert values into a string is by using the .format() method. 

Example: 

print("My name is {} and I am {} years old".format("Rahul", 15))  

Output: 

My name is Rahul and I am 15 years old  

 

18.11 Printing with Concatenation 

You can also use the + operator to join strings. 

Example: 

name = "Aman" 
print("Hello, " + name) 

Output: 

Hello, Aman 

Note: All items must be strings when using +. You must convert numbers using str(). 

 



18.12 Common Errors 

❌ Mixing string with numbers: 

age = 14 
print("Age is " + age)  # Error!  

✅ Fix: 

print("Age is " + str(age)) 

 

Summary 

• The print() function is used to display output on the screen. 

• You can print strings, numbers, variables, or expressions. 

• Use sep to change separators, and end to change line endings. 

• Escape sequences like \n and \t help format your output. 

• f-strings and .format() make printing dynamic messages easier. 

• Always convert non-string values to string when using concatenation (+). 

 


