Chapter 30: Confusion Matrix

Introduction

In Artificial Intelligence and Machine Learning, evaluating the performance of a model is just as important as building it. One of the most common tools used to measure the performance of classification models is the **Confusion Matrix**. It allows us to visualize how well our AI model is making predictions — especially when dealing with binary or multi-class classification tasks.

This chapter will help you understand:

- What a confusion matrix is,
- Its components,
- How to read and interpret it,
- Important performance metrics derived from it, and
- Real-life examples and activities.

30.1 What is a Confusion Matrix?

A **confusion matrix** is a **table** that helps evaluate the performance of a classification algorithm by comparing the predicted results with the actual results.

It shows how many predictions your model got right and how many it got wrong, categorized by each class.

30.2 Structure of a Confusion Matrix

Let's take a simple example of **binary classification** – such as predicting whether an email is **spam** or **not spam**.

The confusion matrix for this would be a 2×2 table:

	Predicted: Positive	Predicted: Negative	
Actual: Positive	True Positive (TP)	False Negative (FN)	
Actual: Negative	False Positive (FP)	True Negative (TN)	

Let's understand each term:

- **True Positive (TP)**: Model correctly predicted **positive** class. *Example:* Spam email correctly identified as spam.
- **False Positive (FP)**: Model incorrectly predicted **positive** class. *Example:* Normal email wrongly marked as spam (Type I error).

- **True Negative (TN)**: Model correctly predicted **negative** class. *Example:* Normal email correctly marked as not spam.
- **False Negative (FN)**: Model incorrectly predicted **negative** class. *Example:* Spam email marked as not spam (Type II error).

30.3 Key Metrics Derived from a Confusion Matrix

From the matrix, we can calculate several **performance metrics** that help evaluate how good the model is.

30.3.1 Accuracy

$$Accuracy = (TP + TN) / (TP + TN + FP + FN)$$

It tells us how often the classifier is correct.

30.3.2 Precision

Precision =
$$TP / (TP + FP)$$

It tells us how many of the predicted positive results were actually positive.

30.3.3 Recall (Sensitivity or True Positive Rate)

$$Recall = TP / (TP + FN)$$

It tells us how many actual positives were correctly predicted.

30.3.4 F1 Score

```
F1 Score = 2 \times (Precision \times Recall) / (Precision + Recall)
```

It is the **harmonic mean** of Precision and Recall. Useful when you need a balance between the two.

30.4 Example with Real Data

Suppose we test an AI model on 100 emails:

- 60 are **spam** (positive class)
- 40 are **not spam** (negative class)

Model prediction results:

- TP = 50
- FP = 5
- FN = 10
- TN = 35

Let's form the confusion matrix:

	Predicted Spam	Predicted Not Spam
Actual Spam	50 (TP)	10 (FN)
Actual Not Spam	5 (FP)	35 (TN)

Now compute the metrics:

- **Accuracy** = (50 + 35) / 100 = 85%
- **Precision** = 50 / (50 + 5) = 90.9%
- **Recall** = 50 / (50 + 10) = 83.3%
- **F1 Score** = $2 \times (0.909 \times 0.833) / (0.909 + 0.833) \approx 87\%$

30.5 Use of Confusion Matrix in AI

- Helps detect whether a model is **biased** toward one class.
- Useful when **data is imbalanced** (e.g., 90% not spam, 10% spam).
- Helps in **model improvement** by identifying the types of errors.

30.6 Confusion Matrix for Multi-Class Classification

For more than two classes, the confusion matrix becomes larger (e.g., 3×3 , 4×4 , etc.)

Example (3-Class Problem: Cat, Dog, Rabbit):

	Predicted Cat	Predicted Dog	Predicted Rabbit
Actual Cat	30	5	2
Actual Dog	3	40	4
Actual Rabbit	1	2	35

Each row = actual class Each column = predicted class

30.7 Common Mistakes to Avoid

- Don't rely **only on accuracy**, especially for imbalanced datasets.
- Always check **precision and recall**, especially in critical applications (like medical diagnosis).
- Use **F1-score** when you need a balance between precision and recall.

30.8 Activity/Exercise

Try this small exercise:

An AI system predicts loan approval (Approve / Reject). Here are the results:

Actual Approve: 80 casesActual Reject: 20 cases

Correct Approve predicted: 70
Incorrect Approve predicted: 10
Correct Reject predicted: 15

• Incorrect Reject predicted: 5

Task: Draw the confusion matrix and calculate:

- Accuracy
- Precision
- Recall
- F1 Score

Summary

- A **confusion matrix** is a powerful tool to evaluate classification models.
- It breaks down predictions into **true positives**, **true negatives**, **false positives**, and **false negatives**.
- From it, we derive important metrics like accuracy, precision, recall, and F1 score.
- It helps in better understanding of model performance, especially in **imbalanced data** scenarios.