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Hello everyone, welcome to this lecture. The plan for this lecture is as follows.

(Refer Slide Time: 00:27)

In this lecture we will introduce the basic rules of counting namely the sum rule and product rule.

And we will discuss about the Pigeon-hole principle.

(Refer Slide Time: 00:39)
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So we will start with the problem of counting and counting is a very fundamental problem in

discrete mathematics. The reason is that in discrete mathematics we are dealing with discrete

objects and since the objects that we are dealing with are discrete we can count them. So very often

we will encounter questions like how many; and our main aim is to come up with methodologies

to address those questions.

(Refer Slide Time: 01:15)

So we will introduce some basic counting rules in this lecture. So the first basic rule is the product

rule. And I am sure all of you are aware of this product rule so let me demonstrate the product rule

first with an example. So here the problem description is the following. You have 2 employees say
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employee number 1 and employee number 2 and they are going to join our office and there are 3

office spaces available.

So I call it office 1, office 2 and office 3; so 3 rooms are available and our goal is to identify in

how many ways we can allocate disjoint offices to these 2 employees. So pictorially these are the

various ways in which I can assign disjoint office to employee number 1 and employee number 2.

So I can assign office number 1 to the employee 1 and given that I have assigned office number 1

to the employee 1, I cannot assign the same office to the second employee.

Because they need to be allocated disjoint offices, so I can either allocate office number 2 or office

number 3 to the employee number 2. Or I can assign office number 2 to the employee 1 but in that

case I cannot assign office number 2 to the employee number 2 in which case I can only assign

office number 1 and office number 3 to the second employee. And similarly, I have an option of

assigning the third office to the employee 1 in which case I have the options of either assigning

office number 1 or office number 2 to the second employee.

So in total we have 6 ways but if you see here closely what's happening is we have a task T, a

bigger task. In this example the task T was that of allocating disjoint offices to the 2 employees.

And we can break that task into a sequence of 2 subtasks: subtask 1 and subtask 2. Subtask number

1 basically requires allocating office space to the first employee and subtask 2 is the problem of

allocating office space to the second employee.

Suppose ! is the total number of ways in which we can solve the subtask 1. So in this example

there are 3 ways; either I can assign office number 1 to the first employee or office number 2 to

the second employee or office number 3 to the second employee. So there are 3 ways of solving

the first subtask, so ! = 3 in this case and for each of these ways of solving the first subtask I

have " ways of solving the subtask 2.

So for instance in this example, once I have assigned office number 1 to the employee 1, I have

the option of either assigning office 2 or office 3 to the second employee. So corresponding to this

method of solving subtask 1; namely that of assigning office number 1 to the first employee I have

437



2 ways of solving subtask 2. So " = 2 here. In the same way if I consider the method of assigning

office number 2 to the second employee.

Then corresponding to this way I have 2 ways of solving subtask 2 and in the same way

corresponding to the method of assigning office number 3 to the first employee. I have 2 ways of

solving the subtask 2. So if this is the case then I can say that the total number of ways of solving

the overall task or the bigger task is ! ∗ ". And that is why in this case the answer, namely, the

total number of ways of assigning the disjoint office space to the 2 employees is 6.

! = 3 in this case, because I can either assign office number 1 to the first employee or office

number 2 to the first employee or office number 3 to the first employee. So there are 3 ways and

for each of these 3 ways I have 2 ways of solving the subtask 2. And that is why the total number

of ways of solving the bigger task is ! ∗ ". So that is the product rule. So in this case I have

considered the scenario where the task T was divided into 2 subtasks.

But in general, the product rule can be applied even for cases where your task  can be divided

into subtask !,", … ,#. So, if you have ! ways of solving subtask ! and for each of this !

ways you have " ways of solving ", and for each of these ways of solving subtask !,", … ,$%!

you have $ ways of solving subtask $ till  ways of solving subtask #. Then the total number of

ways of solving task  will be ! ∗ " ∗ & ∗… ∗ $ ∗… ∗ '. That is the generalized product rule.

(Refer Slide Time: 07:46)

438



So now let us see some examples of product rule. So suppose we want to count the number of

possible functions from a set  to a set . My set  has number of elements which I am denoting

as ! to ' and my set  as  number of elements namely ! to '. So we have already answered

this question when we discussed functions. But now let us see how exactly product rule is

applicable to solve this problem. So your bigger task is to find out the number of functions here.

And the bigger task is basically to assign images to each element from the set . But now I can

divide that bigger task into subtask; namely I can identify the subtask $ which is that of assigning

an image to the element $. And it is easy to see that the subtask $ can be solved in  ways because

if I consider the element $ then its image can be either ! or its image can be " or its image can

be ( or its image can be #.

So they are n ways of solving the subtask $ and each of this sub task are independent so that is

why the total number of ways of solving the bigger task namely that of assigning image to each of

the elements from the set A is  ∗  ∗ … ∗ , m number of times. And that is why the total

number of functions will be '.

Now let's see another example. Namely we are interested to find out the total number of bit strings

of length . And there are plenty of ways to come up with an answer for this question but let us

see how we can apply the product rule here. And what we will do here is instead of counting the

number of bit strings of length  let's see a related problem. Namely, finding the number of binary

functions; namely the number of functions from a set  consisting of  elements to a set 

consisting of only 2 elements namely 0 and 1.

And from the previous exercise, here we know that the number of possible binary functions will

be '. So the notations are actually swapped here. So we have  elements here and || = 2 so !

can have 2 possible images either 0 or 1, " can have 2 possible images either 0 or 1, and similarly

# can have 2 possible images either 0 or 1. So that is why we have 2 ∗ 2 ∗ … ∗ 2,  number of

times namely 2# possible functions.

But our goal is to find out a number of bit strings of length  but what we have counted here is the

number of binary functions.

439



(Refer Slide Time: 11:03)

So what we are now going to do is we will show here that the problem of finding the number of

bit strings of length  is equivalent to finding the number of binary functions. Namely we can

show that there exists an injective function from the set of bit strings of length  to the set of binary

functions. And it is also easy to see that we can establish an injective function from the set of all

possible binary function to the set of binary strings of length .

And since we have established injective functions in both the directions that shows that the number

of bit strings of length  is exactly the same as the number of binary functions. And the number of

binary functions is 2#. So if you are wondering what are the injective functions here, so consider

you are given binary string of length . Some arbitrary binary string of length  say 0, 1 0, 1… like

that.

Then the corresponding binary function is the following: the mapping of ! is 0, the mapping of

" is 1, the mapping of & will be 0, the mapping of ) will be 1 and so on. That is the

corresponding binary function. Whereas if you want to go from a binary function to a binary string

just we do the reverse thing. So imagine you are given a binary function say where ! is mapped

to a bit !," is mapped to a bit " and like that # is mapped to a bit #.
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Then the corresponding binary string will be ! to #. That is the injective mapping in this

direction. So that shows that the number of binary strings of length n is same as the number of

binary functions.

(Refer Slide Time: 13:02)

Now let us consider another fundamental counting rule which is the sum rule and again let me

demonstrate it first with an example. So imagine you have a set of students in a university and a

set of faculty members. Of course they are disjoint because you can't have a student who is also a

faculty member. And our goal is to find out the number of ways in which we can form a committee

of just 1 member.

That 1 member can be either a student or a faculty. There is no restriction. We are just interested

to find out how many distinct committees consisting of 1 member we can form. And it is easy to

see that there are 12 ways. Why 12 ways? Because I can have a committee which consists of only

a student and it could be either this student or the third student or the fourth student or the fifth

student or the sixth student each of them is a distinct committee.

Or I can have a committee which has this faculty member, or this faculty member, or this faculty

member, or this faculty member, or this faculty member, or this faculty member, each of which

will be a distinct committee. So there are 12 different committees which we can form here. So now

how we can view this as a counting rule? So the rule is the following: you have a task  which can
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done either in one of the ! ways or in one of the " ways. Of course, so there is another restriction

and the case here is that none of the ! ways is the same as the " ways.

So for instance if you take this example, ! ways is correspond to the case when the committee

consists of a student and " ways correspond to the case and the committee consists of a faculty

member. And both these cases are disjoint. You cannot have committee member which is

simultaneously a student as well as a faculty member. So if both these 2 conditions are satisfied

then I can say that the total number of ways of solving the task  is ! + ".

Of course in this case I have considered the scenario where the task  can be divided into 2 disjoint

cases. If you have multiple disjoint cases then I can have a generalized sum rule.

(Refer Slide Time: 15:32)

So we have now seen 2 basic counting rules but it turns out that we encounter scenarios where we

have to combine both these 2 rules that, means we can encounter problems which will require us

to apply both the sum rule as well as the product rule. So let me demonstrate an example. So

suppose we are interested to find out the number of passwords of length either 6 or 7 or 8

characters. That means the password can be either of length 6 or of length 7 or of length 8.

And the restriction is that each character can belong to the set A to Z or the numeric 0 to 9. That

means the characters could be your English alphabets or digits and we also want passwords to have

at least 1 digit. So these are the various requirements on the password. So it should be of length
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either 6 or 7 or 8. The character should be either English characters or digits and the password

should have at least 1 digit.

And we are interested to find out how many such passwords we can have. So again this is a very

common problem we encounter. So for instance if you consider net banking password then we

have certain restrictions on the net banking password. It should be of at least this much length, it

can be at most of this much length, it should have some special character etc.,

So in that case one can often ask how many such valid passwords we can form? So let us see how

we can apply the sum and the product rule in this particular example. So our password, the set of

all valid passwords I am denoting it as the set  and this set  actually can be divided into 3

disjoints subsets. The subset * which is the set of all valid passwords of length 6; by the way by

valid I mean that it has at least 1 digit and all the characters belongs to this set. That is what I mean

by valid in this explanation.

So my * is the set of all valid passwords of length 6, + is the set of all valid passwords of length

7 and , is the length set of all valid passwords of length 8 and it is easy see that these 3 sets are

disjoint and by the sum rule I can say that the set of valid password, its cardinality is same as the

cardinality of the set * and + and ,. And there is no overlap; you can't have a password which

is simultaneously of length 6 as well as length 7 as well as of length 8.

So that is why we can apply the sum rule here. Now how do we find the cardinality of the set *,

+ and ,. So let's see the logic of counting or finding the cardinality of the set *, the same logic

is applicable to find the cardinality of the set + as well as cardinality of ,. So what exactly is the

set *? The set * is the set of all valid passwords of length 6. That means it should have exactly

6 characters, which could be either English characters or the digits, and it should have at least 1

digit.

So it can have 1 digit or it could have 2 digits or it could have 3 digits or it could have 4 digits it

could have 5 digits or it could consist of all 6 digits. All these are valid passwords. So you might

be attempting to apply the sum rule here but it turns out that if I apply the sum rule to find the

cardinality of the set * then there might be some overlaps which I have to take care off. So instead
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what I can do here is, I can apply the following logic. The cardinality of the set * is nothing but

the following.

It is the difference of the following two sets. You take the set of all strings of length 6. When I say

all strings of length 6 that means they have 6 characters. But those 6 characters may or may not

constitute a valid password. So for instance I may have a string of the form ; 6 As

belonging to the set of all strings of length 6 but this is not a valid password because it does not

have a digit which is a requirement for a valid password.

So that is why the set of all strings of length 6 have both valid passwords of length 6 as well as

invalid passwords of length 6. Now from this set if I subtract the set of all invalid passwords of

length 6 and by invalid passwords of length 6 I mean strings of length 6 which do not have any

occurrence of a digit. Those will be the invalid password. So if I subtract those strings from this

set then it is easy see that I will get the cardinality of the set *.

So now what is the cardinality of the set of all strings of length 6? Well it is 36* and this I get by

applying the product rule. Why 36*? Because I have 6 positions to fill. That means I can identify

6 sub tasks and at each position I have 36 options. I can either fill a character, English character,

so 26 possibilities or I can fill any of the 10 digits. So imagine you have 6 slots here; at the first

slot I have 36 options to fill, at the second slot I have 36 options, and like that at each of the slots

I have 36 options.

So that is why 36* and what is the cardinality of invalid passwords of length 6? It is 26^6. Because

here I am interested to find out in how many ways I can fill 6 slots such that none of those 6 slots

is occupied with a digit. Because then only that strings of 6 characters can be considered as an

invalid password. So I have 26 options now for each slot because I cannot fill any slot with a digit.

So that is why I have 26* options. So again here I am applying the product rule. And now if I

subtract 26* from 36* that will give me the cardinality of *. The same logic you can apply to find

out + and similar logic you can apply to find out ,. And if you sum those 3 quantities that will

give you the required answer.

(Refer Slide Time: 22:57)
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Now let's see another interesting counting rule which we encounter very often in discrete

mathematics and this is called pigeon-hole principle. So what is the scenario here? So in this

example you have 13 pigeons and you have 12 holes and suppose the pigeons are going to

randomly occupy these 12 holes. We don't know in what order they will be going and occupying

these holes. But irrespective of the way they are going to occupy these 12 holes we can say that

there always exists at least 1 hole which will have 2 or more pigeons.

A very simple common sense. And how we can prove that? We can simply prove it by

contradiction. The contradiction will be, if each hole is occupied by exactly 1 pigeon then since

we have 12 holes we get 12 pigeons. But we have 13 pigeons; so that automatically implies

definitely there will be 1 hole which has more than 1 pigeon. So very simple common sense here.

So now how do we apply; how do we generalize this rule as a counting principle?

So the generalized pigeon-hole principle is the following. So imagine you have  objects, in this

case you had pigeons, and suppose those objects are assigned to  boxes in a random fashion,

then the pigeons-hole principle states that there will be at least 1 box which will have ⌈N/K⌉many

objects.

So this notation is called as the ceil notation. We have ⌈2.3⌉ = 3. Basically you take the integer

which is higher than the integer 2 here, that will be the ceiling of 2.2. ⌈2.1⌉ = 3; basically you

take the next integer which is a complete integer and larger than the current number. Whereas the
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⌈2.0⌉ = 2 only. So in this example if I apply the generalized pigeon hole principle it basically says

that there will be at least 1 box with 13/12 pigeons and 13/12 will be a real number.

And if I take the ceil of that I will be take the next higher integer which is 2. So the proof is by

contradiction.

(Refer Slide Time: 26:14)

So let's see an application of pigeon-hole principle. So what we are now going to show is a very

interesting result. So imagine you have 6 people present in a party and it is guaranteed to you that

you take any pair of individuals then they will be either friends or enemies. You don't know what

exactly is the situation because the party consists of 6 random people but whichever 6 random

people are there in the party it is guaranteed that you take any 2 people in that party they will be

either mutually friends or enemies.

Then our claim is the following: our claim is that irrespective of the way the people are mutually

friends or enemies there always exist either 3 mutual friends in the party or 3 mutual enemies. One

of these 2 will definitely be the case. So how we are going to prove this? We are going to prove it

by applying the pigeon-hole principle and various other proof mechanisms.

And remember, and I am making this claim; the claim is irrespective of the way of those 6 people

are friends or enemies with each other. It might be the case that all of them are mutually friends

then automatically the claim is true. It might be the case that none of them are friends with each
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other then again the claim is true. The claim is if you have 6 people definitely one of these 2 cases

will always hold.

So how we are going to prove this? So we will consider an arbitrary party consisting of 6 people

and out of those 6 people let's randomly choose 1 person. So we are now left with 5 people. So

what can I say about those remaining 5 people. By pigeon-hole principle I can say that out of those

remaining 5 people at least 3 people will be mutually friends with this person that I have chosen

or there will be 3 people who are enemies, mutually enemies, with this chosen person.

I do not know what exactly is the case because that depends upon the exact way in which the

persons or the people are mutually friends or enemies in the party but irrespective of the case one

of these 2 will always hold. Because I have 5 people; so even if out of those 5 people say 2 are

friends with this person and 2 are enemies with this person I'm left with 1 person who has to be

either a friend or has to be a enemy with this person. That is a simple logic. So that is what I am

saying here. So you have 2 possible cases.

(Refer Slide Time: 29:20)

So what I can say is the following: without loss of generality imagine that out of those remaining

5 people there are 3 people who are friends with this person. And since I am applying this argument

without loss of generality, the same argument can be applied for the second case as well when

there are 3 people who are enemies with this person. So again since there are 3 persons who are

friends with this person I am taking any 3 person here who are friends with this fixed person.
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Now my claim is not yet proved here because individually these 3 people are friends with this

person that does not mean that I have the existence of 3 people who are mutually friends with each

other that means they all have to be friends with each other that is not guaranteed as of now. As of

now I have just guaranteed that this person is a friend with this fixed person, this second person is

a friend with a fixed person and the third person is a friend with a fixed person.

So this notation basically denotes friendship. Now I can say that the following 2 cases hold. The 3

people who are friends with this fixed person, they can be mutually enemies. That means, these 2

are enemies and these 2 people are enemies and these 2 people are also enemies. So let me; these

2 are enemies and this too. So if this is the case then I got 3 people who are mutually enemies with

each other and my claim is true.

Whereas I can have a second case where those 3 people they are all new not mutually enemies but

there exist a pair among those 3 people who are friends. Say the first 2 people are friends with each

other. Then I got 3 people who are all friends with each other. This proves my claim. So now you

can see I have proved my claim irrespective of the way that 6 people would have been friend or

enemies.

Now the question is what is the specialty of the number 6 here. I took, I proved my claim for the

case when there are 6 people in the party.

(Refer Slide Time: 32:09)
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What if there would have been 5 people in the party? Then can I say that irrespective of the way

those 5 people are mutually friends or enemies I will always have either 3 mutual friends or 3

mutual enemies. And answer is no. The claim is not true for the case when there are 5 people in

the party. So consider the case when I have these 5 people and there is a fixed person, who is

friends with this person, this person. But he is not friend with this person, who is not friend with

this person and these 2 people are friend with each other and these 2 people are friend with each

other so on, and these 2 people are friend with each other and so on. So in this case you can see

that among these 5 people I neither have the presence of 3 mutual friends nor I have the presence

of 3 mutual enemies. So for instance, if I take these 3 people then this girl is a friend with this

person but that girl is not a friend with this person.

Whereas I require for my claim all the 3 people to be mutually friend or mutually enemies with

each other. So when there are 5 people in the party my claim is not true.

(Refer Slide Time: 33:49)
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So now let us generalize this example to a beautiful theory of Ramsey numbers. So I defined this

function (,) so this function  is attributed to Ramsey who invented these numbers and here

, ≥ 2. So what exactly is the value of Ramsey function (,)? It is the minimum number

of people required in a party such that you either have  mutual friends or  mutual enemies

irrespective of the way the people are friends or enemies with each other in that party.

Assuming that every pair of people are either friends or enemies. So for instance what we have

demonstrated is that (3,3) = 6. Why 6? Because only when you have 6 people in the party then

you can claim that you will either have the presence of 3 people who are all friends with each other

or you will have the existence of 3 people none of them are friends with each other.

(3,3) ≠ 5. It is not 5 because we have given a counter example namely we can have a scenario

where we have 5 people in a party such that we might have the presence of 3 mutual friends or 3

mutual enemies. So it turns out that even though this function is well defined we do not have any

generic formula to find out the value of the Ramsey number or the output of this Ramsey function

(,) for any given value of  and . It is only for certain values of  and  that we can

compute the value but there is no pattern or relationship or any observation which is there in the

output of the Ramsey function due to which we do not have any generic formula.

(Refer Slide Time: 35:56)
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